Multiplication and Division

Multiplication:

Multiplication by zero:

$$3 \cdot 0 = 0$$

$$x \cdot 0 = \mathbf{0}$$

$$0 \cdot 0 = \mathbf{0}$$

Signed multiplication:

 $(positive \ value) \times (negative \ value) = negative \ value$ $(negative \ value) \times (negative \ value) = positive \ value$ $(positive \ value) \times (positive \ value) = positive \ value$

×	+	
+	+	1
_	1	+

^{*}the table above can be applied to Division.

Reciprocals:

The reciprocal of $\frac{3}{4}$ is $\frac{4}{3}$

The reciprocal of $-\frac{2}{3}$ is $-\frac{3}{2}$

NOTE: Multiplying reciprocals always produces 1.

Example 1:

$$a) \ \frac{3}{4} \cdot \frac{4}{3} =$$

$$(0) -\frac{2}{3} \cdot -\frac{3}{2} =$$

c)
$$3 \cdot \frac{1}{3} =$$

Dívision:

Recall:
$$\frac{x}{y}$$
 means $x \div y$

Zero & Dívision:

Example 2:

a)
$$\frac{0}{2} = 0$$
 because $0 \cdot 2 = 0$

b) $\frac{2}{0}$ is undefined because there is no value that you can multiply by $\mathbf{0}$ to get $\mathbf{2}$.

Signed Division:

(negative value) ÷ (positive value) = negative value (positive value) ÷ (negative value) = negative value (negative value) ÷ (negative value) = positive value

Example 3:

a)
$$8 \div 2 = 4$$
 because $4 \cdot 2 = 8$

b)
$$8 \div (-2) = -4$$
 because $___ \cdot (-2) = 8$

c)
$$-8 \div 2 = -4$$
 because ____ $\cdot (2) = -8$

d)
$$-8 \div (-2) =$$
 because _____ $\cdot ($) = ()

Recall: The word product always indicates multiplication and the symbol used for multiplication are (\cdot) and (\times) . The words quotient always indicates division and the symbols used for division are (\div) and $\left(\frac{3}{4}\right)$.

Example 4:

Write a numerical expression for each phrase, and simplify.

a) The product of $\mathbf{9}$ and $\mathbf{-2}$ added to $\mathbf{7}$.

$$7 + 9 \cdot (-2)$$

$$= 7 + (-18)$$

$$= 7 - 18$$

$$= -11$$

b) the quotient of -20 and 4 subtracted from $7 - (-20 \div 4)$

$$= 7 + (-5)$$

= $7 + 5$
= 12

1. The reciprocal of $-\frac{2}{5}$ is _____.

2. Evaluate the following:

$$\text{a) } \frac{5}{3} \cdot \frac{3}{5} = \underline{\hspace{1cm}}$$

$$0 \frac{0}{52} =$$

c)
$$\frac{52}{0} =$$

3. Write a numerical expression for each phrase and simplify:

a) The product of
$${f -4}$$
 and ${f 3}$ added to ${f -10}$

b) The quotient of ${f 42}$ and ${f -7}$ subtracted from ${f -3}$