variables, Expressions, and Equations

A variable is used to express the unknown; we usually use the letter x. An expression is a collection of numbers, variables, and variable symbols [For example,+-$]$.

Example 1:

Evaluate the expression:

$$
x+4 \quad \text { when } x=9
$$

Here we replace x with 9 and simplify

$$
x+4 \rightarrow 9+4=
$$

An equation is a statement that two variable expressions are equal.

Example 2:

a) $x+2=5$ is an equation. Translated into words, it states that the quantity $x+2$ is the same as 5 , and asks what number do you add 2 to, in order to get 5 ?
\qquad

[^0]Translate $14-\boldsymbol{x}=10$ into a word statement and then solve for \boldsymbol{x}.

Translation: What number do you subtract from 14 to get 10?
Answer: $\boldsymbol{x}=$
Example 4:
Evaluate $\boldsymbol{x}+\mathbf{9}$ for the given values of \boldsymbol{x}.
a) $x=6$

$$
\text { If } x=6, \text { then } \boldsymbol{x}+\mathbf{9} \text { becomes } 6+9=\mathbf{1 5}
$$

b) $x=2$

$$
\text { Answer: } \boldsymbol{x}=
$$

\qquad
c) $x=10$

$$
\text { Answer: } \boldsymbol{x}=
$$

Evaluate:

$$
\frac{6 x+y^{2}}{5 x+4 y} \quad \text { for } x=2, y=1
$$

To evaluate this expression, we replace x with 2 and y with 1, then simplify. (Remember your order of operations, PEMDAS).

$$
\begin{aligned}
& =\frac{6(2)+(1)^{2}}{5(2)+4(1)} \\
& =\frac{6(2)+1}{5(2)+4(1)} \quad \text { exponents first }
\end{aligned}
$$

$$
=\frac{12+1}{10+4} \quad \text { then multiplication }
$$

$$
=\frac{13}{14}
$$

NOTE: Always check to see if the fraction can be reduced.

Example 6:

is $x=4$ a solution to the equation $3-x=1$?
First we replace x with 4 , then simplify. Then determine if the equation is true.

$$
\begin{array}{ll}
3-x=1 ? & \text { replace } x \text { with } 4 \\
3-4=1 & \text { simplify } \\
-1=1 & \text { Is this true? }
\end{array}
$$

NO, therefore $x=4$ is not a solution to $3-x=1$.

varíables, Expressions and Equations

1. Evaluate

$$
x+7 \quad \text { for } x=9
$$

2. Evaluate

$$
\frac{x+2 y}{x^{2}+y} \quad \text { for } x=3, y=1
$$

3. Is $x=3$ a solution to the equation $2 x^{2}-1=35$?

[^0]: Example 3:

