inequalities

We use the symbol $=$ to represent equality.
To express inequalities, we have the following symbols:
$>$ greater than
$<\quad$ less than
$\geq \quad$ greater than or equal to
\leq less than or equal to
\neq not equal to

Example 1:

True or False?

$$
\text { a) }-3<-4
$$

The symbol < means less than. Looking at the number line, < means "to the left of"

so, $-3<-4$ means -3 is to the left of -4 on the number line.
Therefore, this statement is false.
b) consider $x>4$

This means x greater than and is to the right of 4 on the number line. $\operatorname{can} x$ be 5?
$\operatorname{can} x$ be 3?
$\operatorname{can} x$ be $4 ?$
Example 2:
True or False?

$$
\begin{aligned}
85 & \geq 2[3+5(6+2)] \\
& \geq 2\left[3+5\left(_\right)\right] \\
& \geq 2[3+\ldots] \\
& 2(\quad)
\end{aligned}
$$

Answer:
NOTE: For example 2, we must follow the Order of Operations.

inequalíties

1. True or False?
a) $5>7$
b) $9>11$
c) $-4>-5$
d) $-11>-10$
2. True or False?

$$
6\left[2^{3}-7\right]+15 \geq 21
$$

